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VITH APPLICATIW TO THE Y¥F¥ ©* OF COMPRESSIBILITY ON

TEE PRESSURE CCEFFICIENT AT 7.8 SURFACE OF A BODY OF REVOLLTION
By John G. Berriot

Four related methode for the study of compressibls flov by means
of the linear perturbation theory sre discussed in detail for the case
of three-dimensicnal flov vith axial eymmetry. A general method vhich
includes the others is also.discussed briefly. As an example of the
application of these methods, it ie shown that, for a very slender dody
of revolution in a uniform stresm of ccapressidle fluid, the pressure
coefficisnt at the surface of the body is almost independent of Mach
nvaber. A mre accurste result for the case of a prolate spheroid,
which was given by Schmieden and Kawalki, is discussed, and 1t 1s pointed
out that this result may be used to advantege for most bodiss of moder—
ate thicimess. Expsrimental data supporting these reculte are given,

1.

INTROCUCTION

Because of the high epeeds of mcdern alrcraft it le desirable to
Astermine the effects of ccupressibility on the loads which may be
expected on. the various parts of the airpleno, This determination is a
problem 4n .three-dimensicnal flow, but over the wving at points not too
cloee to the tips’'cr to the fuselege the flow aprroeches closely to
tvo-dimensional rlov. This fact may be usel as a guide in estimating
the effect of compressibility on the pressures at the wing surface.

On the other hand, the fuseleges Of most airplanes are approximately
bodies of revolution and, consefuently, it is useful to kncw the' effect
of compressibility on the pressures at the surface of a body ¢f revo-
jution. Since the effoct of ccaprsesibility on the pressure coefficient
at the surface of a body of revoluticn is rot the same as the effect

on the pressure coefficisnt at the surface of a body in two-dimensional
flov, 1t followa that, at points of an airplene which are close to both
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the wing and the fuselage, the effect of ccapressidility must be mexe
ocomplex, being & combination of the effecte in two~dimensional flow and
in three—dimsnsional flov with axial symsetry. Generally, at such points,
the effect of the ving on the presswre gosfficient is greater than the
effect of the fuselage and, consequently, the compressidility effsct
resembles ncre closely that for twvo~dimensional flow., On the cther hand,
at points of the fuselage far from the wing the flov spproximates to
axial flov and resulte appropriate to this type of flow are applicadle.

Jor two-dimensional flov of s compressidle fluid past an airfeil
or other body, the Prandtl-Glausrt law (references 1, 2, and 3) states
that as the free—etrean Mach mumber M increeses, the pressure coeffi-
ofent at the swrface of the dody increases sccording to the expression

1//1 =¥, For bodies of smll or moderate thickness and for Msch
numbers belov the criticsl, this lav gives fairly satisfactory agreement
wvith experiment, provided the departures from potential flowv are not
important. It has been assumed by a number of authors (references &, %,
6, and T) that the same lav may be applied to three-dimensional flow,
bdut this is incorrect, as is shown in references 8 and 9 and the present
report. In fact, for very slender bdodiss of revolution it is shown that
the pressure coefficient at the surface of the body ie nsarly independent
of the Mach muber, being ccmpletely independent of the Mach nuader in
the 1limiting case of zero thickness. For the case of the peak pressure
coefficient (or velocity-increment ratic) at the surface of an ellipsoid
of revolution, reference 9 gives a more yrecise result which is applicadle
to many bodies of moderate thickness as well as to very slender bodies.

There is a fundemental diffsrences Detween the pressure-~coefficient
variation vith Mach number in two— and three—dimensional flowv. The form
cf the Prandtl-Clauert lav wvhich is satisfactory for bodies of modsrate
thickness in two-dimensional flow is independent of the thickness ratio
of the body; vhereas for axially symmetric flov the lav for. the pressure—
coefficisnt variation depends strongly upon the thicknees ratic of the
body.,

The Prandtl-Glauvert formuls for two-dimensional flov is obtained dy
moans of the linear perturbation theory of compressidble flov in vhich the
dspartures of the fluid velocity from the mniform fres-stream velocity
are assumed small and their squares are neglected. It 14 clsar that the
theory faile in the neighborhood of a stagnation point and that slsevhere
it 1s at dest approximate, the approximation detericrating, in the case of
flov past a streamline bdody, as the thickness and camber of the bdody in-
crease. There are'a number of ways of applying this linesr perturdation
theory to the study of problems of compressibdle flow, but for any particu—
lar prodlem one msthod may De more convenient than the cthere. Three such
general mothods are described in detail in reference 4. These methods,
as descrided in reference U, are applicadle only to twvo-dimensional flow.
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A fourth method which is applicadle to both two-~ and three—dimensional
compressible flov ia presented in refsrence 8. In all these methods the
properties of a compressible flov are deduced by comparison with a cor—
responding inccapressidle flov whose characteristice are Imown. In the
application of the fourth method to the prodlem of two-dimensional flow
about a body or three-dimensional flow about a body of revolution it ie
necessary to take account of the fact that the bodies in the correspond-—
ing compresaible and incompreesidle flows are of different sizes. On

the other hand, in method I of reference 4, which is, wnfortunately,
applicabdle only to two-dimensional flov, the size, shape, and orientation
of the body are the saume in the coupreseidls and incompressidle flows.
Consequently this method is more convenient for certain prodlems. It

1s pointed out in reference 4 that the other methods presented there
possess certain advantages for other prodlems. It may De sxpected that
methods for the study of three—dimenesional ccmpreseidle flov analogous .
to those of refsrence U will bs useful and convenient for the solution of
many prodblems. The present report describes three methods (methods I, II,
and III) analogous to thoss of refsrence b, for the study of axially sym-
metric campressible flov by means of the linesar perturbation theory.

The method of reference 8, designated method IV, 1e added for ocmpletsnses
and its relation to the other methods is pointed out. A general methed
vhich includes the others is alsc discussed. In method II the site,
ehape, and orientation of the body are the seme in the compressible and
incompreereidbls flows, and conrequently, this method is more convenisnt
for certain problsms. Cn the other hand, methods I and III may bde more
cenvenient for other prodlems. Great care must bde sxercised in using
methods I, II, and III as they are applicabdle only to very slender bodies.
Mathced IV fe not so restricted.

If method II is applied to the prodlem of determining the effect of
ccmpressidility on the pressure coefficient at the swrface of a very
slender body of revolution, it is found that the pressure coefficient is
indspendent of Mach number. For very slender bodies this result is in
agreement with that of reference 8, in which only an ellipsoid of revo—
lution is etudied. It is instructive to obtain the same result by each
of the other three methods, but, in order to do so, it ies nscessary to
determine hov the pressure cocefficient at the surface of the body varise
with the finenese ratio cf the body in inccmpreesidle flow, It ie shown
in thie report that, for a very slendsr streamline body of revolution,
the preseure coefficient at the surface of the body im inversely pro-
porticnal to the square of the fineness ratio. This disegrees with the
result used in reference 5 but agrees with that in reference 8 for the
limiting case of a very elender body. The pressure—coefficient varia-—
tion for bodiee of mcdurate thicikmess it alsc discussed.
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L static pressure :

.-u density

velooity

Cartesian cocrdinates

cylindrical coordinates

components of velocity in X,Y,t directicms

Porturdation velocity in x direction (vy - Vo)
radial component of velooity

velooity of sound in free stream
dyoamic pressure %pv’ y,

Pressure coeffictent [ (p-p,)/q.)
¥ach number in free streem (Vo/ao)
S

velocity potential

stream function

radii of stream surfaces

length of body of revolution
maximm redius cf body of revolution
angle of attack

elliptic coordinates

distance detween fcci of ellipee
semiaxes of ellipme
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] scoentricity of ellipee
Sudceripts and Superscripte:
L] in free or undisturbed atru-.
1 mm_guibl.o or low speed
c ocmpressaible .
8% surface of body (appendix cnly)

THE LINEAR PERTURBATION THECRY

Consider the flow of a8 compressible fluid

undisturbed velocity of the fluid rela
being

compared vith the undieturbed Dressure and will be

changes in deneity, the ratio being

in the free streem. On & linsar theory in which Squares and products
of small quantities ave neglected, Bernoulli's equation

f?ogvz-consunt

for steady irrotational moticn beccmes
P ’

vy

P oo - W - cem——

: —
9B '§°cvoa

Frem oquation (1) there 1s obtained

The equation or contiruity bec-mes

7V, v,
Vogoooﬂ\yxo'&l.¢

o
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If a velooity potential ¢ 1s introduced satisfying the relstions
) » ey e
AN AN

and 1f equation (2) 1s used, equation (3) bDecomss the familiar equation

ao BQ ao
82 &1#5-,4-5‘1-0 (s)

v.2
B'-I-H.-I—é

The transformation of this equation into cylindrioal ooordinates x, r,
& yields

(s)

/362 = 0 and equation

In this report the flov is assumed to possees axial symmetry adout the

x-axie unlees otherwvise stated. In thie ocase
(%) reduces to

av ¥ 1M
Sx-‘ ;,+——-o (6)

A stream function ¥ may nov be introduced writing
1 1 dy
Dvx-po;'é;’ovr-—po;s;

From thie definition the following epproximate relations are obtained:

2 vy 1-,@?.':)(;.1';).,,.,:!'1 n
Vor 3 0o¥, Yo Yo Yo

‘W‘“-Wii-kf FFIFRL TR A




1 9';- Vo

a-=f.-E (8)

o %% Yo

The points for vhich ¥ 1is constant constitute a surface which may de
called a stream surface. The stream surface is in turn made up of
streamlines.

If a solution for inocmpressible flow (B = 1) 1s kmown, solutions

velocity is approximately ccorrect.

Method I
For three-dimensional flow with axial symmetry let

9 = Vox + £(x,r)

be a solution for t.ho velocity potential for incompressidble flow
(B=1) and let

v 2T s alnr) (20)

de the corresponding stream function so that the following relations
must hold true:

‘tx(x,r) - égr(x,r), tr(x,r) Iy é g‘(x,r)

It may be noted that g(-w,r) = 0 since the flov is undisturbed at
infinity upetream. It is assumed that the limit of g(x,r) as »
tends to ze~ 18 finite and not zero for points x of the body not
close to a -:.u .7.3tion point. (This ssswumption 18 correct at lsast tor
flov adbout & Narkine Ovoid or proum spberotd.)

1

fx denotes the partial derivative of f£(x,r) with respect to x:
namely, 3f(xz,r)/Ox and f, = 3f/dr. In equation (13) f,.(xz,fr) s
the value of f,. at (x,fr) and not the derivative of f(x,fr) with
Tespect to r.

N D S i




Then a solution of equation (6) for B< 1l 1s

= Vox+ % £(x,pr)

’

The longitudinal and redial components of wlocity are

Ve Vo 3 La ), Vo m grlx,fr)

From equations (7), (8), and (11) 1t follows ‘that

1 a. [} p 1
V:r' =" .1.70 '; !’x(x,"r) al+ ';; ‘r(xl’r)

1w 1 1
R, £o(x,0r) = Wor &x(x,pr)

Then the stream function ie ,

1 1
¢ =3 V" ¢ 5 8lxer) (1%)

If the body were removed, the velocity at all points of the field
would be V, and the velocity potential and stream functien would de,

respectively, V.x and ?or’. The stresm surfaces would de right

circular cylinders with axse along the x-axis. The effect of the body
is to distort these stresm surfaces. Let h denots the redius at x
ofngim-ﬂo--wfmﬂﬁqtbwummt. If the dody were
rsmoved the redius of this streem surface would be h!, so that
h-ht umdumtonofﬂn--mumrfuoc-nnd\!ﬂamm
of the body. If r=h is cubstituted in equation (1%) and 1t is
observed that. ¥ has the same valus whether the bdody is present or

not, there-is obtained

PR

b,

s

v o JA" + 3 alx,m) = Ly (a0)*

I
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For valuss of h and h' vhich are not t00 small this squation yislds
approximately

v o - 2alxm) _ g(x,en)

b-h
B, (ma') Y

(19)

The distortion of the stream surface in the case of inccagressidle flov
is cbtained by setting f = 1 1n equation (15). If the points (x,r)
in the cospresaitle flov and (x,fr) in the inocapressidle flov are
called corresponding points, then it is seen at cnce from equation (15)
that at points far from the dody the distortion of the stream surface in
the coampressible flow is the same as that at the corresponding point of
the incompressidls flowv. To find the relation Between the distortions
near the Body (1.0., near r = 0) 1t is only necsssary to set V¥ = O
in equation (1¥). Then, sinos g(x,fr) is nearly squal to g(x,0) at
pointe of a very slender body not close to a stagnation point it followe
that the radius of the zero stream swrface at any x in the compressidls

flov 15 p-% times the corresponding redius at the same X in the in-
compressidble flow, It should be noted that the distortions near the
body differ from those far from the bdody.

From squation (13) 1t 1s seen that the increase in the longitudinal
velocity at any point in the oocspressidle flovw is lll times the increase
at the corresponding point in the inccapressidle flow. Near the dody the
longitudinal velocity is nearly independent of r and consegquently near
r =0 the longitudinal velocity increase in the ccmpressidle flov is
1/ times its valus at the same point in the inocmpressidle flov.
Because of equation (1) the same relations are trus for the pressure
coefficient. Also frem equation (13) the radial velocity at any point
in the coapressidle flovw is the same as at the corresponding point.in
the incompressidle flow dut no general comparisons can be given near
r « O Decause the redial velocity depends upon r even for small r,

Method II

Corresponding to the solution given by equations (9) and (10) for
the incosmpressible flow

P=Vx+ f(x,k)

may be written in place of equation (12) fer sny B < 1. The longitudinal
and redial components of velocity are S e e

Vg = Vo ¢ £.(x,0r), Y, = Bfy(x,Pr)

i fd S cdlddriabie -




10-
The stream function is found to de

v e drgt e glxr),

:3%3
67,

HENTE

present
shall bde the seme in Doth flowe
at ocrresponding points.

Method IIT

C
the inccapressidle

® o Vox ¢ 2(z/p,r)

be written in place of equaticn (12) for sny $< 1. Thé lpngitudinal
redial camponents of velocity sre

k1

m::-mumumnn-m (9) and (10) for
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Vo Vo ¢ -:- tx.(x/hr). et (x/8,r)

The streem function ie found to bs

ve %Vor’ + pg(x/8,r)
The distortion of a etream surface ie approximately

28g(x/8,n) *  pg(x/8,n)

Ah=ht's - vo(hﬂl') - 'oh

It follows that the dietortion of the etream eurface moar x = X;
and any r in the compressible flov is B times the distortion of
the etresm surface near X = x1/P and the eame r 1in the inocepreesible
flov. The radius of the zsro stream surface at any x in the ccompreesi-
d1s flov is B* timee the corresponiing radius at x/B in the incom—
pressidble flov. The pressure ccefficient and the increase in the longi-
tudinal velocity at X = x; and r in the compreesible flow are
1/ times their valuee at X = X;/8 and the same r 1in the incom—
preeeidbls flov. The radial velocity at X e x; and any r in the
compreeeibls flov ie the same as at x » X,/ and the same r in the
inccmpreeeibla flov,

Mothod IV

A fourth method, vhich is called sn extension of the Prandtl rule,
i given in reference 8. It 1s expressed in the following concise form:

The streamline pattern of a compreeeible flow to De calculated can
be ccxpared with the streamline pattern of an incompreesible flow which
resulte from the contraction of the y— and z-exes including the pro—

file contour by the factor B = /1 - M® (z-axis in the directicn of
the free etream). In the ccmpreseible flov the preesure coefficient
as well as the increase in the longitudinal velecity are greater in the
ratio 1/92_-_}/(1-!') and the etreamline slopes greater in the ratio

1/8 « 1//1 = H¥ than those at the corresponding points of the equiva-
lent incompressible flov. ’

This method is applicable to both two— and three-dimensional flow.
The proef given in reference 8 differe from the proofe of methods I, II,
snd ITIgiven in the preeent report, but for the case of axially symmetric
flow the methods of the present report may also be used. In thie case

KibitdwatuRadimiasi 4
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1
@ = Vox 4+ — f(x,pr)
‘32

is written in place of equation (12), The longlitudinal and redial
components of velocity are

Ve mVo+ ‘Elz' fe(x,br), Vg = % £.(x,6)

The stream function is found to de

R ;1; g(x,pr) = aﬁ- {,‘%’o(ﬁr)z + 8(*»5*')]

From this 1t 1e eeen that tho points in the inccmpreseible flow which
gsorrespond to the points of a eingle streeam surface in the compressible
flow, themselves lie on a eingle stream suxface in the incompreesible
flow. In other woids, if the compressible-flow fiold ie transformed
by multiplying the r-coordinate of each point by #, then stream
surfacec in this field are mappod into stream ourfaces in the :
incompreesiblo~-flow field. Thua, the two fields are entirely similar
and no approximation is involved in comparing the shapee of the bodien
or radii of the stream surfaces in the two flows; vhereas in methods I,
11, and III the comparison of the body shapes dcpends on an approxi-
mation and becomes exact only in the limiting case of a body of zero
thicknees. Timo, mothod IV may be expected to be the most accurate

of tho four mcthods, eupocailly for bodies of modorate thickness. Of
course, tho thickness of the body ie etill limited by tho assumptions
of the linear perturbation theory. In this comection it may be
pointed out that for many problems one of the other mothods may be
proferable from the etandpoint of convenionce, but care must be
exorcised in their use:

Genexrel Methodl

It is now posaiblo to glve a gencral method which includes tho
preceding methods an epecial casee,

Correcponding to the solution given by cquations (9) und (10) for
the incompresoible flow a potential function

® = Vox + Ayf(dax, ar) (16)

1The goneral method a3 outlined in this cection iz due to
Mr, Dean I, Chapman of the imes leronauticel lalLorutory.
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1s desired. The constants A3, ;A3  must be chosen eo that equation
16) satisfiee equation (6). If equation (16) fe substituted in equation
6) and 1t 1e recalled thot equation (9) eatiefies equation (6) with
Bwl, 1% is easily found that

Bg = Ay an

is a nacesssry and suf‘icient condition that squation (16) bde a solution
of equation (6). The longitudinal end radial components of velocity are

Vg = V5 + A1) fxagx,lar), Ve = A j)s fro\zx.\ar) (18)

The stream function may be found as in method I. From equations (7),
(8), (11), and (17) it follows that

1
Vor

o Yy Mrg

.
i) 14 oo f2(A2x,Ngr) = 1 ¢ ey &elAex,Aqr)

13 A A
G -%,;3 fo(Aax,\gt) = ;,“,—os,(hzx.lar)

Then the stream function ie

v e e 2 gOurer) (19)

Since eny two of the three constants 1Ay, Az, and Ay can be chosen
arbitrarily, there is a double infinity of methods. [

In general, in transforming frem the compressidble~flow field to the
incompreseible-flow field, strean surfaces are not mapped into stream
curfacea. If, however, it is degired that etream surfacee mep into
atream surfaces, as in method IV, then an additional cond!tion must be
impcced on the A. Equation (195 may be rewritten

Y A
Y- i: l %vo(lar)',-\x—,\? + 8033;7\3")]
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In order that stream ewrfaces map into stream swrfaces it is necessary
and sufficiont that

r:{:'- 1 (20)

If equation (17) 1s used, it 1s seen that squation (20) can be replaced
by

LY B—l,- (22)

There is thus a single infinity of methods satisfying both squations
(17) and (21).

If in addition it is desired to have the x-coordinate the same in
both flows, it 1s necessary to choose » 1 and there is then only
one method satisfying bdoth equations (17) and (21). From these squa—
tions 1t follows that ), = 1/p® and )5 = 8. This is the sams as
mothod IV which has already been discussed. It 1s sasily seen that for
methods I, II, and III equation (17) 1s satisfisd but equation (21) 1s
not.

It should be pointed out that great care should de exercised when
using methods for which squation (21) 1s not satisfied. For such methods
the comparison of body shapes is valid only for vary slender dodiss.
Methods for which equation (21) is satisfisd are not »o restricted. It
will be ueeful to discuss in more detail the general propertiss of meth-
ods for vhich both equations (17) and (21) are satisfisd. From squa—
tions (18) and (21) it 1s seen that the pressure coefficient and the
increase in the longitudinal velocity at any point in the compressidle
flov are 1/p2 times their valusa at the corresponding point in the
incompressidle flov. The thicknese ratioc of the body in ths compressible
flov 18 Ag/Ay = 1/B times the thicimess ratio of the body in the in-
campressidble flov. Also the streamline slopes in the compresasidls flow
are greater in the retio \y)y = 1/8 than those at the corresponding
points of the incompressidls flow,

It may be noted that, if the general analysis is applied to two-

dimensional flow, equations (17) and (21) are unaltered; howaver, the
atream function is given by

¥ = Yoy + BAg(heX,Asy)"

e

Sasatinigaaid ot 4.
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-instead of by equation (19). It is eacily seen that the methods of
réferende & satiefy squation (17) but not equation (21) sind hencs streem
eurfacee in the compressible flov do not map into streanm swrfaces in the
corresporling incompreseidle flov,

VARTATION OF THE PRESSURE CCEFFICIENT VITH THE
FINENESS RATIO IN mmmx ow

It has been shown that in methods i, III, and IV the fineness ratic
of the body is not the ssme in the campressidls and incompressidble flows.
Consequently, in order to study the sffect of compressidbility on the
pressure coefficient at the surface of a body of revolutioen dy any of
these methods, it is necessary to determine hov the pressure coefficient
at the surface of the body depends on the fineness ratio of the dody in
the case of incompreseidle flov,

Suppoee the velooity potential and stream function for the flow

about a slender streamline body of revolution placed in a uniform stream
of inccxpressidle fluid are, respectively,

@ = YVox + £(x,r) (22)
Veligt e (23)

30 that tho following relations muet hold trus:

x(x,x') == g,(x,r), f,.(x,r) - -.- &x(x,r)

As before it may be noted that f("r) = 0, and again it will be
r

assumed that the limit of g(x, as r tonds to zero is finite and
not zero for pointe x of the body not close to a stagnation point.

Then the velocity potential and etream function for the flow about a

second dody obtained from the firet dy multiplying the lateral dimen-
sion® by n are approximately

Q= Vex ¢ a%r(x,r) (2b)

A\ -:—Vor' + n.c(x,r) (2%)
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This is sasily sesn by considering the stream functions of the two flows,

noting that ¥ = O on the bodies, and that g(x,r) 1s approximately
equal to g(x,0) since = 1s emall,

If P, and Py denote the.pressiwre oosffioientes for the seme x
at the surfaces of the respeotive bodise vhose redii are ry and nny,
1t followe from equatioms (1), (22), and (2%) that
2(v'y). orx(x,r)

of -

Yo Yo

Py =~

Pe . - 2(V'z)e 2n®rx(x,nry)
& . - -

A %

Henos these equations give the approximate relation

P2 _ (V'x)a/Vo _ n¥fy(x,ors) N, (26)
Py (V2o /¥, £x(x,r1)

Thie approximation ie velid for a very slendsr bdody since olose to such a
body the longitudinal velocity increase fy(x,r) 1s nearly independent of

r. It 3e true that for a prolate spheroid fx(x,r) becomes logaritimi-
cally infinite but it is still true that the limit of fy(x,or)/fy(x,r)

is unity as r tends to zero; this is sufficient to prove equation (26)
for the limitizcg case of zsro. thickness.

On the other hand, the relation of equation (26) may not de the
most satisfactory one for bodies of moderate thicknese. Approximate ex-
pressions for the pressure coefficient and velocity increass at the sur—
face of a prolate spheroid are given in ths appendix. Let the sudsoript
1 refsr %o a prolate spheroid of thickmess ratio ¢/l end tho subscript
2 refsr tc a body of thickness ratio ne{l. If terms of order (t/1)2
and higher are neglected in equation (AS) there is cbtained

-

r 1
(Pmax); | ('x)max fa/Vo =(nt/1)1og(nt/1)*

= - - 1 SRR T 27)
(P-x); l-(v'!)mxixlvo '(‘/l)’ log(t/t )® ® i 108('-/”2_i !
o

log n?

(TEEECHE N SRR S ey
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If terms of order se/ﬂ’ "ave retained but terms of higher arder are neg

lected in‘équation (A6) there is obtained -

(Pmax), [(V'x)nxjgﬁo - %(nt/ll'log(nt/l)’ ~(1-10g2) (nt/2)*
Faax)y | (V' oduaa o~ = B0/ 108(0/0)" —1-20g) (820"

MWL 108 n®" .
= E " log(t/10* + 2 (1-1e¢e)] , i

In opplying these relations to the study of compressible flov by means of
mothod IV it will be necessary to take n equal to fA. Corresponding to
a Mach mader of 0.8, B 1s 0.6, With n = 0.6 the approximations given
in equations (27) and (28), as well as the true values of the left membere
for a prolate epheroid, ere plotted as a function of t/1 in figure 2.

In addition thie retio is plotted in figure 2 for the NACA 111 series
(refarence 11) of bodies as well as for a seriss of bodiee given in ref~
srence 12. Unfortunately these series of bodies are not related to one
another so that one body may be obtained from another of the meries by
multiplication of .the radii by a figsd factor. Noweven the distortion

is not great. . Straight lines correspording to n = 0.6 and n2? = 0,36
are added to figure.2 for comperiscn. It appears that for small valuse of
t/1 equation (28) giyés the best approximation for the prolate spheroid;
vhereas for large valuee of t/1 equation (27) e better, but neither is
of much valye. for.values of. t/l. .in excess of 0.30. The approximation
given by equation (28) appéars to be most satisfactory for general.use
but ite application-should be restricted to bodjes vhose thickness ratios
are lese than 0.30. It chould be nctod that as ¢/ tends to zero the
right members of equations.(27) and (28) both reduce to n® in agresment
vith equation (26). .

VARIATION OF PRESSURE CCEFFICIENT WITE MACE
" NUMEYR IN-COMPRESSIBLE FLOW
Consider a slender stresmline body of revolution of lsngth 21 and
maximm readius ¢ in a uniform stream of compressidle fluid. Suppose

that the undisturbed fluid flows in the direction of the positive x-axis
and that the body 1s placed with its axis along the x-axis and its center

st il o . §700 i,

W] ESE 4N, W™ 3 VRS -
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at the origin as showm in figure 3, Demote by P, the pwessure coeffi-
cient at any point x of the surface of the dody. Let P; Do the rres-

sure coefficient at the same point of the swrface of the same bdody under
the assumption that the fluid is incompressidle.

Mothod II is the most oonwenient method to use, for the size, shape,
and orientation of the body are wnchanged in the corresponding incompressi-—
ble flov. It follows st onoce that P, = P; or, in other words, that the

pressure coefficient is independent of the Mach mmber.

In using any of the cther methods, it is necessary to take sccount
of the change in the shape of the body in passing from the coagpressidle
flow to the occrresponding incompressidble flow. Bince methods I and III
are valid only for very slender dodies the s te pressure~coeffioient
variation with thickness is given by equation (26), Whem method I 1s used,
the corresponding body in the inccapressible flow 1s of length 21 and

maximm redtus 8% oo that Po o (1/8)(AP3). = Py. Agatn, if method III
1s used, the in the inocmpressidle flow 3s of length 21/ and maxi~
Tmnu t8~% so that the thickness ratio is decreased in the ratio

8%, It follows that P, = (1/8)(8P;) = Py, Finally when method IV s

used the dody in the ino ssible flow $s of length 21 and maximum
redivs t8 so that Pg = (1/8%)(p%4) = 23, SR

Methoda I, II, and III are valid only for very slendey dodies not
only because scme distortion is introduced in the ccmparison of the dbody
shapes but also decause the slight variation of the pressure cosfficient
wvith distance from the axis of the body.is neglected when this .distance
1s emall. This veristion with distance must bde considered in order to
avoid inconsistent resulte if the cloeser approximations of equations
(27) and (28) are used in conjunction with methods I, II, and III.

Since this 1s inoconvenient to do and since method IV 1s not subject
to theee limitations, 1t'is preferadle to uwse the latter method wvhen.
the closer spproximations given by equaticns (27) and (28) are used,

'If aquation (27) 1s used together with method IV 1t.1s easily found
that

(Panx)o’ bﬂ-ﬂ,ﬁo s p*

(Paaz)t V') 0 Yo 108(t/1)*
vhereas, 1f equation (28) 1s wsed, there is cbtained

Cas)y (" saso /o L
(Puax), [(V'x)‘,"iﬁo log(t/1)® « 2(1~1log2)

(29)

T e
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Equation (29) is the result of reference 8 and equation (30) is the
asymptotic first approximation of reference 9. m result of equation
(20) 1s shown grephically in figupe 3. g

Figure 2 shows that equation (30) 1e nkm to be most suitadle
for general use although for thicker prolate spheroids equation (29)
would appear to be better. Neither of these equations should be used
for bodies vhose thickness ratice exceed 0.30. For thicker dodiss the
more exact recults of reference 9 may be used. For very slender dodies
the right membere of both squations (29) and (30) reduce to unity in

t vith the result previously obtained. In the deation of
equation (30) to bodies other than prolate spheroids, t/i may be
chosen as the actual thicknese ratic of the dody or as the thickness
ratic of the epheroid having the ;same peak pressure coeffioient as the.
body, or t/l may be ohosen in ecme other sppropriste msmner. This un—

certainty in the choioe of t/l vill not materially affect the ﬂl\ﬂ.u
obtained from equetion (30).

References 8 and 9 study only. tho maximm velocity mcrc-nt, but,
e/ Juuou (A9) and (ALO) of the appendix are used, and terms of order’

are ntainod., then 1t 1s ouﬂ; shown that at the surface of a
spheroid

i .

‘ e(v'x)cho e log p* o
— ]
(o) fv, los(t/l) + 2{(1-(::/1) 1-1032} P

P log 8% i '

n -~1 1°‘('/”' +: (*/‘)2/[1-(8/1)’] +2—21032 (32.) :

It should be noted that in contrast to equation (26) P, /P and

((V'2)/Foi/[(V'2) 4 No] ave slightly different becam uru of higher

order have bessn retained. Of course equations (31) and (32) ere valia
only over the central portion of the spboroid. and are invalid near the
stagraticn peints. When x = O ‘equations (31) and (32) reduce to
equation (30). OCenerally it will be sufficiently accurate to use equa-
tion (30) in place of equations (31) and (32). g

ESTIMATION OF CRITICAL MACH NUMBERS

. . . 1

The critical Mach number of a7y body can be determined from its
lov-spesd peak pressure coefficient provided the variation of peak

pressurs zoefficient witk Mach mumber is kmown. If equation (30) 1s

(31)-

Whide bk alleidd bxide 1 0
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used to setimate this variation for a body of revolution and if in this
squation t/1 4s chosen as the thickness ratioc of the prolats spheroid
baving the same peak pressure coefficient as the dody under considers—
tion, then the #0lid curve of figure & is obtained. If the lav for very
slender bdodise is used, namely, that the pressure coefficient is inde—
pendent of Mach number, the dashed curve of figure & 1s obtained. The
curves applicadbls to two-dimensicnal flov cbtained from the Prandtl-~
Glauert and Kirmén-Teisn (reference %) laws are shown for comparisen.

EXPERIMENTAL RESULTS AND DISCUSSION

In order tc detsrmine vhether the resulte cf the preeent paper are
in agreemant vith experiment, a considerabls smount of sxperimental pree—
sure data ves studisd. The fuselages of many airplanse ere approximately '
bodies of revolution but most data have been taksn with the wing on the
fuselage. At stations near the wing the presawrs coefficisnt 1s more
irfluenced by the presence cf the wirg than it is by the fuseslage., Con—
esquently, data on the fuselage withcut the wing or on the fuselage far
frcm the virg are reeded.

Pressure -data for & fuselage® without a wirg cr stber protuberancss
were evailable for cnly one airplere wkich, in this report, is designated
a8 airplacs A. Thess data were taken in the Ames 16-feot high-spesd wind
turnel and ccrrected for turnel-wall effscts, the correcticn to the Mach
number being in the neigtborhocd cf 5 percent. This fusslage is & dndy
cf revolution. Back cf the maximum section, the regular fusslags vas
replaced by a cecnical shape as shown in figwe 5. The 1 of the model
tested vas 135.0 inches and the maximum thiciness was 37.50 inches, givirg
a fineness ratio of 3.595. The lccations of the pressure orifices are
aleo shown in figure 5. The mcdel was supported in the turnel by means
of twc struts connected to 1t about 45° on sither side of the bottom
vertical center line of the fusslage., S5ince the data frcm the lower
crifices might be influenced by these strute, the variation of pressure
ccefficisnt with Mach number is shown in figure 6 cnly for the orifices
on ¢r rear the tep of the model. The data of orifices T-2 and T-3 may
be influerced by the presence of two holes in the fuselsge rear the nose
vhich were to simsulate gun ports. For purposes of ccmpariscn a 1/B
curve ie edded in each case. Fer orifices ™7, TR-7, T-8, and a
curve shoving the thecretical variaticn of the peak preesure coefficisnt
ae given Yy equaticr. (30) is added. Thie curve is seen to lis very clcee
to tha 1/p curve appropriate to two—dimensional flov. It can be sesn
that fcr the crifices T-7, TR-7, T8, and TR-8 the sxperimer.tal preseure
coefficients rise alighktly with Mach number but lees tharn predicted theo—
retically ty squation (30). At the cther orifices tie preesure coeffi-
cier.t rises loss rapidly and sven falls at scme of tte crifices, chang-
ing sign in ore or twc cases. This is not predicted by the linsar theory
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at all. A more acourate and dstailsd calculation carried out in reference
13 torupcrucuhr body, however, reveals euwh tebavicr on somo Muof
the body.

. The other availadble data were for a fuselage with wing. It was oon-
aidered that proesure data for orifices ncar the nose of a long fuselage
muu&mmocmwﬂamm‘ofmm Near ths wing, the
Motdﬂummﬂdmmt.

rmvvmumfwmnionofmru&upor

its vertiocal contor lino are alsc shown.
roar of ﬂubmur'lmwmtpm:cnot the.
ch approximates most closely to a body of revolution. Figure
shove the variation of preesure coefficient with Mach numbsr at these

five orifices. These data were taken in the Amee 1G-foot high-speed wind
tunne)l and were not corrected for tunnel=wmll effec:, It is seen that
at those orificas farthest from the nose the presmmv coefficient ia ro-
markably constant as the Mach mumber 10 changed.

Figure 9 shows the fuselags, ving and canopy of a 1/5-scale .model
of airplans C togother with the lmttm of some of the presswre orifices.
The forward portion of this fuselape ias approximatsly a body of revolution,
the nose duct having bdbeon replaced dy a plug. Figuro 1O shows the varia-
tion of the preeswre cosfficient with Mach number at a number of orifices,
the.  data having boen takea for the wing and baeic fuselage dut with the
otnopy « A number of orifices are not shown in figwe 9 as it is
dravn with the canopy oh. But the poeition of each orifice for which
data are given in figure 10 is descridod by civing ita distance in inchee
frcm the nose of the funelage with plug. Those data were obtained in the
langley C-foot hiphespeed wind tunnol, It is seen that, at those orifices
which are well forwird of the wing, the presewre coofficient is rearly
cdnstant or incroases elovwly with increaocing Mach muwibnr, ito curve re-
min.ng balow the 1/f ourve; but near the wing the inc.ce 1 of the pres-
sure coafficient fe much more rapid and at several orific s ho increase
is mnre rapid than 1/B. At ouch orificee the effect of thy wing ia
groator than that of the fuselage. Moreover the flow.over tle ving is
more nearly two-dironsional and so the 1/ lav would be expocted to
hold. The critical Mach numdor of the wing ic 0.60 and thie may account
for tha drope in some of tho cwrvea sbove M = 0,70.

It waa considored that in the caeee of airplancs B and C the bodiea
tasted 414 not recezble puwre bodies of revolution sufficleatly clese

1y
Yo varrant a comparicon of the test resulte with the thooretical :nultl
of equation (30). s

s I& M,ﬂ;m-.ﬂ.l TN
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The Kollsman pitot-static tude ¥,.8.8.C. Fo. 88-1~2950 1s showmn in
figure 11. This tube 1s & Dody of revclution, and a short distance dack
of the nose ite cross section remains ccnstant for a considerudle distance,
the diameter of this constent portion deing ssven—eighth inch. The statis
orifices are located near the center of this length of comstant cress sec—
tion and ere 5-1/16 inches frcm the nose. Figure 12 shows tha variation
of pressure coefficient vith Mach mmber at the static orifices of this
pitot-atatic tude. These data were odtained in the calidration of this
instrument in the Ames 1-— dy W-foot high-speed wind tunnel and corrected
for the effect of turmel dlockage. The tunnel choked at a Mach mumber
of 0.952 and at Mach mmbere close to this value tha tumnel corrections
are unreliadle. rorthuuu
ltlhchnﬂoroowro&

the model teated.

increase is very small and
(30) dut 1s fu- below 1/3.

peak pressures was in good agreement with the 1/’ lav, bdut at other
points on the fuselage the pressure—cosfficient variation does not
follov this lav. Theee oonclusions are in agreemsnt with the data showmn
in figure 10, It appeers that near the ving vhere the presgures
ocour, the flov is nearly tvo-dimensional and the 1/P law gives & goed
plcture of the actual wariation of the pressure cosfficient. But at
points farther from the ving the flov is more nearly three-dimensional
and at such points which are not too close to a stagnation point the
pressure coefficient should be constant at least for very slender bodies
according to the theory developed in this repert. For scmevhat thicker
bdodies the pressure ccefficient may rise slovly vith increasing Mach
number and equation (30) gives a formula for this increase. The ex—
perimental data of Delanc shov several different typea of pressure—
coefficient wvariation. The type may deperd on the proximity of the

ving and may result from ving end fuselage preseures folloving diffsrent
lave of variation.

It 1s assumed by Robinscn and Wright (reference 6) that the variationm
of the peak pressure coefficient with Mach mumder can best be represented
dy the 1/8 lav for three—dimensicnal flov as well as for two-dimensional
flow. In viewv cf the foregeing discussion this would appear to de Justi-—-
fled, provided the peak pressure coefficient occurs near the ving, and

P R———————
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f.huu-nyﬂnouontlmtr m
Fo attempt is made mnfmcGQomuo
variation at points other than where the puk

Itwmt .for those dodles which approxima
Wduwlﬂimchtnwm-mtwelmwu
the pressure ctefficicnt is nearly ccnstant or increases slowly vith
Mach nusber. It cannot De said that the pressure cceffisctent is exactly
constant in all cases, as proved in this report for a very slender
of revolution. Nevertheless equation (30) appears to ovwerestimate
actusl increase for the true dodiss of revolution tcated.

coxcLusIons

1. Four rslated methods and a'general method for the study of three~
dimeneional axially symmetric compressidle flov by means of the linsar
perturbation theory. axe presented. In sach case the properties of the
cospressidle flov sre chtainod frcm those of ‘s ccrrespinding ingompressi-
dls flov. Each of the methods poesesses certain advantages. over the
others. JFor exampls, in method II the body sbape, site, and orisantation
are the same in the .corresponding incompressidle flov as in the com-
pressidls flow; vhereas in method IV the streamline fields are entirely
similar, the incompressidle fisld deing odtained dy a contraction of the
ccmpressidble fisld in the redial direction. Methods I, IY, and IIT axe
linited to very slsnder dodiss; vhereas -MIV-:N;WJ.M to bodies
of moderate thickness.

Z.Brmotuchotﬂnn four methods, it is found that the pree-
oure ccefficisnt at the surfacs of a very slender streamline body of revo—
lution placed in a uniform stream of compressidle fluid is neerly independ-~
ent of the Mach number, deing sntirely independent of the Mach mmber in
the limiting case of zero thicikness. This result is invalid near a stag-
nation point and its application is therefore usually limited to the
csntral portion of the body. For a prolate spheroid the variation of the
peak pressure coefficient with Mach mmber is given by the formula

(Paardy 10g(1-#")
(Ppax), 10g(t/1)® + 2(1-10g2)

and thie result may bde used for bodies of moderats thickness (thickness
ratio less than 0.30). For very slsnder bcdies the second term is neg-
1igible vhile for a thickness ratio of 0.2 the increase in the pressure
ceefficient is about half that for a tw-dimensional body.
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. 3. Experimental data for bodiss of revolution without wings or other

Ixperimsntal 1ata for dodies of revolution
constant or slovily rising pressure coefficieat
rising pressure cosfficient near tlis wing,
th that predicted for two-dimsnsiomal bodies.

. On the fuselage of an airplane near the ving the pressuré 0ceffi-
cient is influenced more by the wing than by the fuselage and, at such
points, the pressure—coefficient variation is dDest represent dy the

1/]1-? lav appropriate to two-dimensional flow. Sincs the peak
Jressure cosfficient usually ococurs near the wving, the variation of peak
presoure coefficient for a wing-fuselage ccmbination is bDest represented

by the 1//1 =M lav. On the other hand, at points on the fuselage
far from the ving and not close to a stagnation point the pressurd’ .
coefficient is nearly comstant. In order t6 obtain an sstimats df: the
rise in the pressure coefficient, the result for the peak pressure coeffi-
' elent given by squation (30) mey be used. ° -

Ames Asronauticel Ladoratory,
National Advisory Coammittee Tor Aercnautics,
"Moffatt Field, Calif., May 13, 1946,




pressidle flyid whose velocity at a large distence frem the Yody 1w Vg
in the directien of the positive x-exis. Suppose the sphercid to de
located with its center at the origin and its majer axis along the x-atis.
Let © dennts the distance of sither focus frem center of spheroid and
£, 1 denote the elliptic cocrdirates for a.meridian secticn, so that the
folloving relaticns between the cocrdinates are satisfied:

Cmunnmhulph.uouf‘ndmiwmm_dm
14

x = g cosh £ ocs 9

recsinh teiny
Alsc let
8 = ¢ cosh {* = semimajor axis of sllipse forming meridian section
b-e-me’-mm-wouipufmmmmum

se/1-(/a)? s 1—.- ecoentricity of sllipse forming meridisn
a cosh l section 5

vhere (% 15 the valus of ¢ on the ellipse forming meridian section.
Then the velocity potential for this flow is given in ssction 105 of
Lasb'e Hydrodynsmics (referencs 13) in the form

Vo0 1
’-'J-W”.n 506!“108
ol -

If the equations vhich give x and r in terms
differentiated partially with respect to x and r,
3_!_8_!._ sinh £ coe 9
dx 3 cofcosh®s — coe® n)

ot o cosh t sin 0
——m 8 ——————
) 3 clcoen®t — cos” n)
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The velooity component in the direction of the x-axis is given dy

n-2-RE.2R

Vhen equation (Ai) 10 used,: 1t 1s ouu;'toma that

“i" _e.:_{“‘x:’: ’i'”:“ n}

v‘-v

Similarly, the radial velooity oomponsnt is given by
w-2-RE22
and it is easily found that
V0 8in n cos

(lcgm 1_..)(00011'! - cos® u)-m t

1-e

Atmmrmofmmmquum (A2) an2 (A3) reduce to

(av)

V,.
Yo (108

l1-e
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It follows that

itm Vi*/Vv, -2
w— &
Y0 (h/0)* log(v/a)?
-

--im Ml e o
o—> 1 (1-9?) log(1-0®)( 10g(1+e) - 1og(1-e)) - 20 10g(1-9%)

1
=~ 1in 2 :_01&-05 {103(1".) - ' cos® q}

0->1 0o + m { (1-®)[10g" (1-»}- u.'a-.n-mo.uo.z}

unou MT=0 or x. Algo

lim Y3"No -1+ é}ﬂl)' log(b/a)?
b/a-->0 (b/a)

i e e ’1*"""1*5—  logli%)
°->1 (1~e®)[10g(1+e) - 1o¢(1 ~e)] -

20
2 2 i
e’ (1-.}10:(1-.)0-{11 )log(1-e ).I.ag—-— (140)10g(140)+ i—-‘-;__q

o->1 (1-e?)(10g(140) - log(l-e)] - 2¢

2log 2 + 2cec?
-—=_ T 5C8e "
-2

= log2 - cmc? g

uwless 420 o o, If terms of higher order than (v/2)° are neg-
lected 1t fouovn that, except for n =0 or %,




IABAD(IO Am9

Yo 2G> i (')""“ " - log ﬂ(‘) )

In the same way it follows that

1im 'rl,v 1‘- a ein n coe N
b/a->0 b/a ® e >1 (1.' cos 'l){(l'..) (Log(1+e) ~2og(1-e) 1- a}

20in n cos 3
--—-———--eotn
-2etn®n ..

unless. n'= 0 or wx. Thus if terms of higher order than (b/a) sre
neglected, there is cbtained, except for n =0 or =x,

V' No = = (b/a) cot 0 © (A

If 1t s remembsred that the pressure cesfficlent at the surface:
of the sphercid ie given by

SRR TN A7 ALER AT Al

and If terme of higher arder than (b/a)® are meglected 1t follove that

P = (b/a)® log(b/a)® + (oct® q + 2-2 log 2)(b/a)® (a8)

unless N =0 or «x.

For scme purposes it ie convenient to give expressions for vx'/ve,

and P* 1n terms of x instesd of 7 in vhich case equations (AS) aml
(A8) become

!x:. s (!)llq (:l)’- (1—_(-:7.);- log 2)(})’ (a9)
P (- ) 105( ( TE%L + 22 log 2)(':')' (A10)

unless x/a = %1,

bt b b b xed
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